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Figure 1: Causal discovery in physical systems from videos.

= |eft: balls moving around. Hidden confounders on the physical
iInteractions causally affect the system’s behavior.

* Right: we can find a reduced-order representation from the images
and infer the causal relationships to reflect the topology of the cloth.

V-CDN: Visual Causal Discovery Network
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Figure 2: Model overview

Our model consists of three components:
= A perception module extracts unsupervised keypoints from images.
* An inference module observes the movements of the keypoints,
= determines the existence of the causal relations and
» the associated hidden confounders.
» A dynamics module predicts the future by conditioning on the
current state and the inferred causal summary graph.

Figure 3: Unsupervised keypoint detection.

* The perception module assigns keypoints over the foreground and
consistently tracks the objects across different frames.

Predict the Causal Summary Graph and the Future

Input Frame to the Causal Summary Graph Future Prediction from the Dynamics Module
Inference Module Predicted Ground Truth T+1 T+5 T + 10 T + 20
I |
I |
2] I |
— . I | @ o -4
"8 ’ S ! I ¢ o * C
P z | 1 & ) * Q o
e I | h'e
I I & )
@ * : :
@ 2 ’ : @ & 8 5
= © I I
.-8 g I [
on é & ] : o : & o . o Q
N I 1 & [ Q
7~~~ #* ! !
ho) ) I I
2 g . : |
EE - c | :
*
i |\ :
~ I I
I |
I I
I I
1= I
= None
nni @ PElm N | e |
|
|
|
|
|
-c: |
= None |
z |
I
|
|
|
|
8 \ None !
A \ '
¢ 1
|
I
|
I
T) I
|
5 None |
= :
|

Figure 4: Predict the Causal Summary Graph and the future.

Our inference module
» recovers the causal graph in the Multi-Body environment, and
= captures the connectivity structures in the Cloth environment.

Figure 5: Results on discovering the Causal Summary Graph.

* More observation frames lead to higher edge classification accuracy
(a) and lower uncertainty (b).

* The inferred continuous variables correlate with the ground truth
hidden confounders (¢ & d).
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Figure 6: Extrapolating to unseen graphs of different sizes.
= QOur inference and dynamics modules, trained only on 5 masses,
generalize to different numbers of masses from training.
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Figure 7: Results on counterfactual prediction.
» Counterfactual predictions via intervening in the identified graph.
= Allow extrapolation to param ranges outside the training distribution.

Website
(video & code)
https://bit.ly/2G kaji
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